
I 

. I  

, \  
< ,  

i t  

I 

\ e  

1 .  
\ 

AS T RO.RE LATIVI TY 

by Helmzlt G. L. Krdzlse 
George C .  Murshul l  Space  Flight Center.  
Hzlntsville, A la bumu 

- 

i 

d 
I j 

i 
N A T I O N A L  A E R O N A U T I C S  AND SPACE ADMINISTRATION WASHINGTON, D. C. J A N U A R Y  1 9 6 4  

I 

i 



TECH LIBRARY KAFB, NM 

ASTRORELATIVITY 

By Helmut G. L. K r a u s e  

George  C. M a r s h a l l  Space Flight Center  
Huntsville, Alabama 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
. .  . 

i 
1 

For sale by the Office of Technical Services, Department of Commerce, 
Washington, D.C. 20230 - -  Pr ice  $1.75 

.. .. . ..... -. .. . - - ... 



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL REPORT R-188 
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BY 
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ABSTRACT 

In this paper the special theory of relativity is extended to include the vectorial and scalar 
transformations of kinematical and dynamical quantities assoc ia ted  with bodies whose proper or 
r e s t  mass  is variable with time (i.  e. rockets). Besides the known transformation formulas for 
force (or momentum flow rate) the general transformation formulas for power (or total energy flow 
rate) a re  given for the first time. All text books on the theory of relativity introduce the  c lass i -  
cal definition for the power which is an overspecification. It would be correct only when the res t  
m a s s  is not changeable with time. This  assumption is always fulfilled when applying the theory 
of special relativity to fast  moving electrons, atoms, or nuclear particles,  but it is not true for 
fast moving rockets. Generalized relativist ic conservation laws of momentum and total  energy 
(mass) are derived. 

An application of relativist ic dynamics to rocket propulsion gives the  data of an  arbitrarily 
accelerated rocket in free space (without external forces) in  the system of a stationary earth 
observer, and in the res t  system of an astronaut centered in the moving rocket itself. 

Two special cases of rectilinear motion of a rocket with constant exhaust  velocity are 
treated: 

(1) constant thrust acceleration (hyperbolic motion) 
72) constant mass  flow ra te  or constant thrust 

Tables  with numerical values for dimensionless flight parameters will be given for both cases. 

In this report Einstein’s general theory of relativity (gravitational theory) is applied to the 
motion of an artificial satellite revolving in  an  arbitrary orbit around a central  body and the time 
dilatation effect for this satellite is given. Th i s  relativist ic perturbation theory is based on 
Einstein’s general field theory, differential geometry of non-Euclidean spaces, potential theory, 
and celestial mechanics. The  short periodic perturbations a re  excluded by using time average 
values over a revolution. The  secular  and long-periodic (non-relativistic as well  a s  relativist ic) 
perturbations of the osculating orbital elements, which represent deviations from the el l ipt ic  orbit, 
are presented here for the case of a rotating, non-homogeneous, oblated spheroidal central  body. 
This is a n  extension of the  work of Einstein (1915) who considered not ion  around a mass  point 
as well as the  work of deSitter (1916) and, independently, of Lense  and Thirripg (19181, who 
treated the relativist ic motion around a rotating, homogeneous, spherical  central  body, omitting 
the  terms due to the square of theangular velocity. 

A formula for the relative difference of the  time ra tes  of a satellite clock, compared against  
a standard earth clock (time dilatation effect) is derived for orbits of any eccentricity and equa- 
torial inclinations, thus extending the  pape r  of Winterberg (1955), Singer (1956) and Hoffmann 
(1957). 
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A S T R O  R E L A T I  V I  T Y  

BY 
Helmut G. L. Krause 

PART I 

RELATIVISTIC ROCK ET MECHANICS 

SUMMARY 

In t h i s  p a r t  the s p e c i a l  theory of re la t iv i ty  is ex tended  to  inc lude  the  vec tor ia l  and s c a l a r  
t ransformations of k inemat ica l  and  dynamical  quan t i t i e s  a s s o c i a t e d  with bodies  whose  proper  or  
r e s t  m a s s  is var iab le  with t i m e  ( i .e .  rocke t s ) .  B e s i d e s  the known transformation formulas for 
force  (or momentum flow ra t e )  the genera l  t ransformation formulas  for power (or t o t a l  energy flow 
ra t e )  a r e  given for the f i r s t  t i m e .  All  t ex t  books on the  theory of re la t iv i ty  introduce the  c l a s s i -  
c a l  def in i t ion  for t he  power which is an  overspec i f ica t ion .  I t  would be cor rec t  only when the r e s t  
m a s s  is not  changeab le  with time. T h i s  a s sumpt ion  i s  a l w a y s  fulf i l led when applying the  theory  
of s p e c i a l  re la t iv i ty  to  f a s t  moving e l ec t rons ,  a toms,  or  nuc lear  p a r t i c l e s ,  but i t  is not  true for 
f a s t  moving rocke t s .  Genera l ized  r e l a t i v i s t i c  conserva t ion  l a w s  of momentum and  total  energy 
( m a s s )  a r e  der ived .  

An appl ica t ion  of r e l a t i v i s t i c  dynamics  to  rocke t  propuls ion g ives  the  da t a  of an  arbitrari ly 
a c c e l e r a t e d  rocke t  i n  f r e e  s p a c e  (without  ex terna l  fo rces )  in the  s y s t e m  of a s t a t iona ry  ear th  
observer ,  and in the  r e s t  s y s t e m  of an  a s t ronau t  c e n t e r e d  in the  moving rocket  itself. 

TWO s p e c i a l  c a s e s  of r ec t i l i nea r  motion of a rocket  with c o n s t a n t  e x h a u s t  veloci ty  a r e  
t rea ted :  

(1) c o n s t a n t  th rus t  acce le ra t ion  (hyperbol ic  motion) 
(2) c o n s t a n t  m a s s  flow r a t e  or c o n s t a n t  th rus t  

T a b l e s  with numerical  v a l u e s  for d i m e n s i o n l e s s  fl ight parameters  wi l l  be given for both c a s e s .  



I. RELATIVISTIC ROCKET KINEMATICS 

A. General Lorentz Transformations 

The special  theory of relativity is based on two principles: 

The postulate of relativity. It is impossible to measure or detect unaccelerated translatory 1. 
motion of a system through free space.  

2.  The velocity of light in free space  
is the same for a l l  observers, independent of the relative velocity of the source of light and the 
observer. 

The postulate of the constancy of the velocity of light. 

Using these  postulates,  A .  Einstein (Ref. 1) derived the Lorentz transformations (trans- 
formation formulae between two reference frames in relative uniform motion to each other) previ- 
ously derived by H. A .  Lorentz (Ref. 2) and H. Poincare (Ref. 3) on the bas i s  of the electron 
theory. 

Two coordinate systems S and S’moved against  each other with a constant system velocity, 
(where v is the velocity vector of the system S ‘ relative to S and v ‘ = - v is the velocity vector 
of the system S relative to S’) have origins 0 and 0’, respectively,  coinciding a t  the t ime  t=tbO. 
The transformation of a position vector r = (x, y, z)  and the t ime  t in the system S to the corres- 
ponding quantities r ’= (x ‘, y ’, z ‘ )  and t ‘ in the system S ‘ is given by the general Lorentz trans- 
formation (without rotation) in a paper by G. Herglotz (Ref. 4), namely 

L J 

or 

where c is the light velocity and 

A l l  these transformations s a t i s f y t h e  equation 

s2 = (r r) - c2 t 2 =  (r ‘- r’) - c2 t ’ 2  (invariant) ( 4 )  

The inverse equations ( 2) follow from equations ( 1) by interchanging (r’ , t ?  and (r, t )  

2 



and replacing v by v ' =  - v. 

The general  Lorentz transformation with rotation (when the Cartesian axes  in  S and S' do 
not have the same orientation) are 

, x - u t  
x = ~ = x cosh $I - c t sinh $ 

a 
y ' = y  ; z ' = z  
, c t - x  v / c  c t  = = c t  cosh $ - x s inh  $I a 

D r ' = r + v  [($ -9 - 4 

x ' +  u t '  
a 

y = y '  , z=z' 

x =- = x ' cosh  $I + c t ' s i n h  $I 

c t ' +  x ' v / c  = c t ' c o s h $ + + ' s i n h $  c t  = 
a 

where D is the rotation operator (a  tensor or matrix). Due to 
-1 D v ' = - v  ; v ' = - D  v 

there is 

and the inverse relations 

because of the identity 

(10) 

I 
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B. Transformation of Particle Velocities 

The motion of a n  arbitrarily moving particle will  be given in the system S by its instantane- 
The particle velocity veftor is u = dr/dt = 

) = (%,9,2) and the velocity i tself  is given by u = (u?+ u:+ u2 )/2. Corresponding 
ous  position x = x ( t ) ,  y = y ( t ) ,  z = z (‘t) or r (t). 
I (ux , u y  ,u  
quantit ies in the System S ’are  marked by a prime. 

By differentiation of eqs .  (1)  and ( 2 )  one obtains the transformation formulae for the 
t ime  elements and for the Lorentz contraction factor a: 

Transformation formulae a l s o  follow for the local velocity vector of a particle i n  the reference 
system S and in the system S’ in relative uniform motion with constant velocity v to S, namely 

(13)  
, dr’ dr’/dt a u + v  ~ ( ~ - - c z ) ( u - v ) / u ~ - - ~ ~  u = 7 = - =  

dt dt’/dt 1 - (u.v)/c 2 

01 

These formulae are  the basis  for the relativist ic kinematics. By squaring eqs.  ( 1 3 )  and 
( 14 ) there re nults 

1 - (u/c)2 . 
dt 
dt ’ 1 - ( u * v ) / c ~  

a 1 f (u ’.V)/CZ = J  1 - (u ?c)2 
a z= = - 

and thus 

dt 41 - (u/c)’  = dt‘ di - ( u  ‘/c)‘ = dr (invariant) 

(17) 

where r is called the proper t i m e  measured in  a system centered in the moving particle. 

For u I( v respectively u’ ( (v  eqs.  ( 13)  and ( 1 4 )  yield the usually quoted addition theo- 
rem of particle velocit ies 

U’C v 
U r  

u - v  
U =  

1 - (u.v)/cz ’ 1 + (u ’.V)/CZ 

4 



For u l  v, respectively, u ’I v eqs .  ( 13) and (14) yield 

U ‘ = a u - v  ; u = ~ u ’ + v  (20) 

For ( u (  = c (photons) there is u ’= - u, whiIe for u = v there follows u ‘= 0 (transformation to res t )  
meaning that the coordinate system S ‘ is centered in  the particle i tself  (rest  system So ). 

For the spec ia l  case where v is in the direction of the positive x - axis ,  eqs .  ( 1 3 )  and 
( 1 4 )  give 

a u  a u z  u x - v  , , 
ux = 1 - ( u x  v / c  2) 

’ 
u y  = l - ( u , v j c 2 )  ; uz = 1 - ( u  ,v/c2) 

or 

Taking sca la r  and vector products of eq.  ( 13 1 with v produces 

U‘V - v 2  

1 - (U’V)/C 2 

a ( U  x V (  

1 - (u.v)/c 2 
u’.v = ; J u ‘ x  V I  = 

Introducing the angles 0 = Q (u, v) and 8’ = 
division by v, in the following form 

(u ’, v) the above equations can be written after 

and thus 

and 

a sin 8 tang‘= 
c o s  e - ( v / u )  

The inverse equations follow at  once by interchanging the primed and unprimed quantit ies and re- 
placing v by - v ,  thus 

u’cos e‘+ . s i n e =  a u ’ s i n  8’ 

1 +  
u c o s  e = case' u p v  cos e‘ 

l +  c 2  C 2  



Applying. Fqs. (24 )  and (26 )  respectively eqs.  ( 2 7 )  and ( 2 9 )  to photons ( u  = u ’ =  c) 
the relativist ic formulae for the aberratioh of light follow: 

or 

A more rigorous proof can be derived from the invariance .of the phase of an electromagnetic 
wave. This  principle a l s o  gives the relativist ic formuIa for the Doppler effect. If v is the 
frequency, w the phase velocity, n the wave normal or the unit vector in the direction of the ray, 
and [k = ( v / w )  n] the wave propagation vector, the invariance of the phase can be expressed by 

Eliminating r ’  and t’  by means of eq. ( 2 ) 
terms respectively on both s i d e s  of the above equation yields the transformation formulae 

and comparing space-dependent and time-dependent 

k = k ’ + v [ c - l )  -3+5]; k ’  
v = v’+ a (k ‘*v) 

The elimination of r and t by means of eq. (11.2) leads to the inverse relations 

k ’=k+v[ ($  - 9  S - L ]  . , = v - k - v  ___ c 
ac2 ’ 

(33) 

(34) 

Introducing the direction angle of the wave normal 8 = < (n, v) the transformation formula for t h  e 
frequency can be written 

, v -  (k*v) 1 - (n-v) / w  1 --wW) cos e 
v =  = v  = v  

a a a ( 3 5 )  

Taking the scalar  and vector products of k ’ with v produces 

and 

V ‘  V 
Ik ’x .v l  = (k  x V I  or -7 ln’x VI = - 1n.x v( 

W W 

These equations can be written 

Dividing both equations gives  the transformation formula for the direction of the wave normal 

a s i n 8  
(37) tanO‘= _ _ _ - ~  

cos e - ( v  w ) / c  2 

6 



Squaring and then adding both equations produces 

Eliminating v’/v yields  the transformation formula for the phase velocity 

The inverse transformation formulae for the wave characterist ics are  

A comparison of eq. ( 2 6 )  with eq. ( 3 7 )  and eq. ( 3 8 )  with eq.  ( 2 5 )  shows that u = C ~ / W  

and u ’ = c 2  /w’. Therefore velocity and direction of a particle are transformed in the s a m e  way 
a s  corresponding quantit ies for a wave with phase velocity w = c z  / u .  DeBroglie used this re- 
su l t  in h i s  wave theory of elementary particles.  

Applying the above mentioned formulae to a light source in vacuo (w = w ‘ =  c )  the follow- 
ing  transformation formulae resul t  

V 
, 1 -  %case , 1 + ? “ C O S  8’ 

v = v -  ; v = v  - 
a a 

V 
c o s e - -  

1 - - c o s d  1 -- c o s e  c o s e - -  
(42) 

a s i n  e a sin 8 
V V V 

cos e ’= ; s i n e ‘  = ; tanO’= 

c 

case'+ 2- 
(43) a sin 8’ a sin 8’ 

,c . sin e = . ~- ; tan 8 = 
i +  - cos e’ 1 + - V cos e‘ c o s 6 ‘ +  - V 

cos e = 
V 

c. C 

e V a2 
v i  

tan K = J ~ + ?  tan - ; 1 +  - cos 8’ = .. 
V 2 C V 1 - - cos e 1--. 2 
C C 

It is easy  to derive the c lass ica l  aberration formula from these equations, namely 

(44) 

7 



sin (6 ‘ -  0) = s in  8 ‘ cos0 - - ‘cos O‘sin 13 0 

U - - (I - a )  cos e 

I - - cos e 

( I  - a )  cos e ’ +  f 

= s in  e 
U 

C 

T U  

C 
= s in  8 ’ L -  L‘ r’cos 8‘ 

I + _V. e‘ 
C (r’v/c) sin 8 = f sin e 

r’ C 
6‘- e = 

€J 

C 
For - << 1 (a  =: 1) the above mentioned formulae yield 

( 4 5 )  
v v 
C C 

e‘-& - s i n e ’  = - s i n e  , 

the same equation which follows directly from the figure. 

In discussing the Doppler effect there are two spec ia l  cases 

a )  the usual longitudinal Doppler effect: n (1 v ( 6  = 8 ’ =  0 )  

V 

I .  C 
V = v  - -  

v a 1 + -  

n 1 v ( e  = - n U 
b) the transverse Doppler effect: e ’=  n - c0s-I - = 2 ‘  C 

- sin-‘a) 

The decrease of the frequency, v ’ , 
in accordance with the time dilatation of a moving clock. 

of the emitted light corresponds to a shift towards the red 

It is useful to  have available the transformation formulae of certain other quantities. Using 
eq. ( 4 4 )  the transformation formula for the solid angle d n = s in  8 d8 dq5 

The transformation formulae for the amplitude A ,  the volume V of a laterally bounded, finite 
wave and the total Energy E = A 2  V of the wave we 

The total energy density u = E / V  = ’/2 A2 will be transformed according to  
8 



2 2 

thus 

Due to the transformation formula for the number density of photons D = u/hv: 

D' A' V 
D V '  

the number of photons N = D-V = E/hv  is a relativist ic invariant: N ' =  N .  Thus the relativi- 
stic transformation from one to another coordinate system is not connected with a creation or 
destruction of photons. 

For practical  applications of the  relativist ic Doppler effect and aberration formulae, it is 
more advantageous to replace the angle 8 between the velocity vector v of the light source 
(relative to the observer) and the actual direction from the light source io the observer  by the  
angle 8 = 0 + n between v and the actual direction from the observer to  the l i g h t  source.  Like- 
wise the angIe d '  h a s  now to be replaced by @ ' = 0 ' + n for the correspondipg apparent angles.  
Furthermore, u' should be the proper frequency uo of a light source or a transmitter while v is 
the frequency measured by a n  observer or a receiver. The eqs. ( 4 1  ) to (44) therefore y i e l d  
( p  = v / c ;  a = d l 7 1  

1 + p c o s  0 
d m  

1 - p cos 0' 
d T  v = u  ; u = v o  

- 41 - . p 2 s i n  0' 
(54) cos  0 = cos  o'- .p . Sin@=d1-P sin 0' . tan @ = 

l - p c o s o '  ' l - p c O s @ '  ' c o s  Q'-  p 

tan E= .\is' tan - 0 ; 1 - p cos 
1-p '  

2 l + P  2 1 + p c o s  0 

@ = @'= 0 (receding space vehicle): 

v/v, = - 1- B - - ___ a " - " < 1 (shift to the red) 
a 

-1 
P :  @ =  - ; @'= cos  77 

2 

v/vo = 41 - p2 = a <1 (shift  to the red) 

( 5 5 )  

v/v, = ~~ 1 = 1 > 1 (shift  to the violet) 

8 = 8'= n (approaching space vehicle): 

* + > 1 (shift to the violet) 9 u/v = -- I + @ -  a 
a 1-g = I - p  



The above mentioned formulae also apply to the c a s e  where the (ear th)  observer is moving 
with respect to the fixed s ta rs  and the light source (fixed s ta rs )  is a t  rest. It is only necessa ry  
to interchange primed and unprimed quantit ies and to  replace v by -v .  

An illustra.tion of the before mentioned formulae is shown in the following table: 

.. 
(1 - p 2 )  112 

1 + p cos e v/vo = p + cos e 
1 + p cos 8 e ’= cos-l 

a_ - ____ - 

e /9 = v /c  p = v / c  

0.995 
- -~~ 

0.5773 0.0501 
0.6043 0.0537 
0.6928 0.0668 
0.8660 0.1000 
1.1547 0.1990 
1.5274 0.7230 
1.7321 20.0000 

0 0.5 0.995 0 

00 00 oo 00 1 
30 30 17.588 1.537 1 
60 60 36.869 3.311 1 

90 60.000 5.732 1 
1 

90 
120 120 90.000 9.912 
150 150 139.792 21.166 1 
180 180 180.000 180.000 1 

C. Lorentz Contraction and Time Dilatation 

Two important applications of the Lorentz transformations can be made: 
1. A measuring rod a t  res t  (u e.0) relative to the system S has  the length Ar =.r2-.rl  . In the 
system S‘ moving with the velocity v relative to S the two end-points of the rod have a relative 
vdoc i ty  u ’=.---v and simultaneously 

[ A  t ’ =  ti - t i  = 0 or A t = ( A r 4 / c 2  = ((ArbvVv 2 ,  (1 - a 2)] 

have a distance 

For A r 11 v there is A r ‘= a Ar (Lorentz contraction) while for A r l v  there is no contraction: 

A r ’ =  Ar 

2. 
A t  =t2--.tl 
nowin  the distance A r ’ = - v A t / a = - v A t ’ .  

Two events observed in the same point (Ar = r2 - rl = 0) of the system S in the t i m e  interval 
appear in the system S ’ i n  the t ime  interval A t ‘ =  At/a (time dilatation), however, 

Thus, i f  I, is the res t  length of a rod, the length of the moved rod is 

I = Io 41 - (v/c)2 

and, i f  r is the proper t ime  of a clock which is a t  res t ,  the t ime  of the moved clock is 

r t =  
~TXzF 

so that the moving clock will l ag  behind one a t  res t .  

(57) 
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D. Transformation of Particle Accelerations 

Differentiation of eqs.  (13) and (14) gives the corresponding transformation equations for 
the acceleration: 

or 

Some special  c a s e s  will be considered now. For a(lu there follows 

and for allullv there is 

, a 3 a  a 

1 - .uu /c  2 

Setting allv yields 

and sett ing a l v  (a-v= 0) gives 
a2 a 

a =  

Another case ,  u l v  (u-v = 0) provides 
r 

For the special  ca se  where v = (u.  o,o) is in the direction of the posit ive x -.axi s the eqs  
and (60) yield 

(59) 

11 



This 
t ime 
now 

A very important case is obtained by putting u = v or u '= 0 (transformation to a res t  system). 
The correstJonding 

The quantit ies tl = u and a = 41 - ( v / c ) ~ =  4:l - ( u ~ c ) '  are 
means that the primed system is centered in  the moving vehicle itself. 
t' is called the proper time r . 
functions of the t i m e  t .  The eqs.  (59)  and ( 6 0 )  are  now 

and thus 

a-u u. D U  

cz l + a  U 
a a +  - - a a + 7 (1 -.a) u 

a =  c. 
a3 a3 

, a;u u a 'si 
a = a2 [a - - -1 = a 2 [at-  -(I U 2  - a) .] 

c2  l + a  

There are two special  cases .  Namely, for aI(u or a'llu there is 

a '= a/a3 

and for a u or a '  u there is 

a '=  a/a2 

In the section on dynamics there appears the function 

where a = du /dt and u du/dt = u*du/dt = a-u has  been used. Using eqs.  (62)  and (63)  eq. 
(66)  can be written 

, a'.d u - a 4  u - + - - = a a  + - - -  
c2  a3 c 2  l + a  (67)  

a 
= a a ' +  (a'--a/a2) = ( 1 + a )  a ' -  - 

a2 

For a 11 u or a '11 u there is 

while for a l  u or a ' l u  there is 

12 



2. RELATIV.lSTIC ROCKET DYNAMICS 

A. Def in i t ions 

In accordance with the principles of relativity that the theorems of conservation of m a s s  and 
momentum hold in a l l  sets of coordinate systems in uniform relative motion (using the more 
complicated Lorentz transformations instead of the Galilean transformation equations), . it is 
necessary to modify the older Newtonian mechanics by assuming that the mass of the particle 
depends on its velocity. 

If m, is the proper mass or res t  mass of a particle moving with the velocity u the following 
definition equations hold. The mass  is given by 

This yields,  for the momentum vector, 

The total  energy is introduced by 

where 
the particle 

Eo = m ,  c2  is the res t  energy. The difference between E and Eo is the kinetic energy of 

T = E - E , =  c ~ ( t n - m o ) = m 0 c 2  212 (1 + 3/4 u 2/c2+.. .)  

The force is defined in relativist ic mechanics a s  the momentum flow rate 

Tolman (Ref. 5, p .  46) says  that “the inclusion of m, inside the bracket makes the expression 
applicable a lso in c a s e s  where the proper m a s s  of the particle varies, a s  it  might, for example, 
from an inflow of heat.” In 1934, he probably did not have in mind an application to fast-moving 
rockets expelling proper mass (exhaust gases) .  A s  in the author’s paper of 1.955 (Ref.$ ) where 
the Special Theory of Relativity was  extended to systems with timely changeable res t  m a s s e s  
(rockets), the proper or res t  mass m, will be treated a s  a function of the t i m e  t (but not of the 
flight velocity u )  in this paper. Thus the las t  equation yields 

du dm dm 
dt dt dt 

+- - u = m a + - u =  F = m  - (74) 

showing that in relativist ic mechanics the force F and acceleration a will generally not be in 
the same direction, as it was  in Newtonian mechanics. The power or work done on a particle per 
unit t i m e  will be defined here as the total  energy flow rate 

6. Transformation s 

The general Lorentz transformation (eqs.  1 and 2) provided the relations between the 
space and t ime coordinates of system S to those of system S’. The corresponding transformation 
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equations for velocity and acceleration were derived from them. 
the transformation relations for certain other quantit ies of particle dynamics. 
there follows 

It is very important to p o s s e s s  
From eq. (70) 

m - u2/c2 = m’ 41 - -u’2/c2 = m, (invariant) 

The proper t ime  element ( d r  or dto ) is given by 

d t  dl - u z / c  =. dt‘ dl - . U ’ ~ / C ~  = d t ,  (invariant) 

A division of both equations shows the following simple relations 

,- _ -  dt - - % (invariant) 
m0 m m 

By means of eq. (17) the eqs.  (76) and (77) immediately give 

(76) 

(77) 

(78) 

where 

a = - u 2 / c 2  

The transformation equations for these quantities of particle dynamics are, 

(1) for the mass: 

(2) for the mass flow rates  

dm ‘ , ( a  ’-V)/c 
( 8  1) 

dm dm‘ l+(u‘ .v) /c2  m’ d u ’  - * -  + - (z- $)= dt’ + m dt dt ’ a a 1 + (u ’.v)/c 

or 

dm’ dm (a.v)/c 2 

dt‘ dt l-(u.v)/cz 
-P - - m  

thus 
3 , ( a ;v ) / s  (a v ) / 2  a :v 

m 

thus 

or 

v (p*v)/(l + a) - E 
a 
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(4) for the  total energy: 

( 5 )  for the  force (momentum flow rate): 

- - d p  dp/dt’ u F’+ v ((1 - a)(F’.V)/v2+ (dE’/dt’) /c2 1 F = - =  ~- 
d t  dt/dt‘ - 1 + (u :v)/c2 1 + (u ‘.v)/c2 

or 

(6) for the power (total energy flow rate): 

dE dE/dt’ dE’/dt’-t(F’-V) dE’ d E / d t -  (F-V) 
dt dt/dt’  1 + (U ’*v)/c ’ dt ’ 1 - (u*v)/c 

. - -  - - = --.= 

Instead of differentiating eq.  (86) it is a l s o  poss ib le  to multiply eqs .  (81) or (82) with c2 
yielding 

dE’ dE m(a-vi) ; - -  - - -  dE dE’ + “(a’ .~ )  
-c- 
dt  dt‘ 1 + (U ’.V)/C 2 dt’ dt 1 - ~u*v) /c  

It is .easy to see that the eqs .  (89) and (90) are  the same s ince  

d dm d dm’ , F = - ( m u )  = m a  + - u ; F ’ =  - (m’u‘) = m’a’ + I u 
dt  dt dt dt  

(90)  

(91) 

The transformation eqs .  a r e  not given in any standard book on Theory of Relativity, a l -  
though they follow from the definition F = dp/dt or F’= dp’/dt: See, for example, the books 
of Tolman (Ref. 5 )  and Moller (Ref. 6) on Theory of Relativity. Instead of eq. (89)a  further 
definition is introduced, namely 

(89) 

d E / d t =  (F.u) or dE’/dt’= (F’su’) 

That  would mean that in any system the change of kinetic or total energy per unit time is equal 
to the work done by the force per  unit time. However, this is an  overspecification. 

Identifying the system S’ with a r e s t  system &, (u ’= 0 ; u = v) the definitions dE/dt = (F I ) 
and dE’/dt = (F :u ’ ) are correct only when the res t  mass  is not changeable with time. Th i s  
assumption is always fulfilled when applying the Theory of Special Relativity to fas t  moving 
electrons, atoms or nuclear particles. However, this is not the case when applying it to fast 
moving rockets, expelling rest mass  (exhaust gases).  In the general case, these  definitions are 
wrong and have to be replaced by the .correct transformation formula eq. for the power. ( 8 9  ) 

C. Transformation to a Rest System 

Putting u ’ = 0 (u = v) in  the  before-mentioned transformation equations the  following rela- 
tions wiIl result  when the prime is replaced by the subscript  0 (to designate that quantit ies 
belong to the  r e s t  system): 

m E d t l  1 
mo E o  dto a d-2 

_ = - = - - _ -  - -  (92) 
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and for the mass flow rate 

dm dm Q,'U dm dm 
dt d t o  dto dt :2 (s) -=d+ mo (. c 2 ) ;  A= - - - 

thus 

anu 
ao.u = - 

a3  

The force is transformed according to 

( 93) 

thus 

The transforma don law for the  power is given by 

d E  , (sow) = 2 + (F, .u) 
d E  d E  
-- -0 + m  
dt dt ,  dt0 

r 

o = - - - (a.u) = 
d E  d E  m 
dt0 dt a 

The eqs .  (96 ) ,  (97 ) ,  (98 )  were already given by the author in  1955 (Ref. 8) .  Writing eqs .  (61) 
and (62) as  

and using these transformation laws  for the acceleration or the proper acceleratiorl, respectively, 
together with eqs.  (92) and ( 9 3 )  in  the definitive equations for the forces 

d dm F = - (mu) = ma +- u ; F, = m o a o  dt dt 

then the above-given transformation equations ( 9 4 )  and ( 9 5 )  are  obtained. Dividing eqs .  <97) 
and (98) by c 2  yields 

(102) 
dm dm F , u  . - -  

c 2  ' dt, - - +  dt dto 

The first of these  equations can be obtained directly without using the transformation equations 
by differentiation: 
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Instead of splitting up  the force, F, in one part proportional to the  acceleration a and 
another part proportional to the velocity u ( s e e  eq. l O l ) ,  F can be subdivided into one term 
due to the change of the res t  mass  with time and the r e s t  term F* identical  with F for parti- 
cles with constant rest mass.  

Due to eq. (67) 

thus 

and 

F*=  aFo 

Multiplying the last equation with u yields 

Putting eq. (106) into eq.  (104) gives the equation of motion in  the form. 

Compared with the corresponding equation in the book of Mdller qq. (107) h a s  the 
additional term - a2 (dm, /dto)u on the right s ide  and the advantage that i t  IS a l so  applicable 
to systems with timely changeable res t  m a s s e s  (rockets). Introducing the force F,  or the 
Newtonian force F, , into equation (107) yields [by means of eqs .  (102), (105) and (lob)]: 

(Ref. 6) 

m - = F -  du dt - dm dt u = F  -[(%)+az$]u 

and 

In the special case F, 11 u there is 

dm 
F,= F,; F = F o +  u ; m a  = a 2  F, or a/a3 = a, (1  10) 

D. Application o f  Relativistic Dynamics to Rocket Propulsion 

In the following, the data for a rocket and its exhausted gases will be marked without a 
subscript i n  the system S of a stationary earth observer and with the subscript  0 in  the re s t  
system So of an  astronaut centered in  the moving rocket itself. Applying the transformation 
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eqs.  (13) and (14) for particle velocit ies to the exhaust velocit ies v,, in the system So 
where the thrust is generated and v, in the system S of an earth observer the following formu- 
l a s  are obtained: 

(112) 
av,+uK1-a)(u-ve)/zr?+ 11 - - av, + u((wv,/c2)/(1 +a) +I) 

v, = 1 + (u*v,)/c 2 1 + (U.V,)/CZ 

where the relative velocity between the two systems is u and a = \/1 - u 2  /c 2. Eq. (79) can 
be written, for this case ,  

where dm and dm, are the elements of mass flow after ejection in the two systems S and 
So , respectively. The element of mass flow before ejection 

is invariant. The mass flow rate in the system So of the astronaut is 

where 
of the rocket. 

,u: = -: dm,*/dt, is the mass flow rate in a system in rest  relative to the exhaust gases  
of the earth observer is The corresponding mass flow rate in the system S 

in accordance to eq. (102) . The quantity 

is the primary thrust force of the rocket in the rest  system 
The corresponding thrust in system S which the earth observer would measure is 

So where the thrust is generated. 

or using eqs.  (111) and (117) 

in accordance with eq. (94). The results can be summarized in tabl? 2. 

An important quantity is that part of the total energy of the exhaust gases  which can be 
of the astronaut this conver- conv&ted into useful work (kinetic energy). In the res t  system S 

sion factor, first introduced by E. Saenger (Ref. 9), is given by 
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and thus 

vw /c = (1 - (1 -.y)2 = d$z=jT 
Putting a e mo /m  into eq. (113) gives 

m 

The equation of motion is 

- ( m u ) = m  d -+ du - u = F = -  dm - dm 
dt dt dt dt ve 

or 

du d??i 
m - = -  ( v e +  u) - ; dt dt 

thus, using eq. (122), 

Applying eq. (11 1) then yields 

Considering the special  c a s e  v, 11 u equation (124) reduces to 

which can be easily integrated for constant exhaust velocity. 
rocket for t = O ( u  = 0); the integration yields 

L e t  M o  be the res t  mass of the 

thus 
C 

where r is the mass ratio of the rocket. The  inverted formulas are 

The  eqs.  (126) and (127) represent the fundamental relativistic rocket equation derived by 
J.  Ackeret (Ref. 10) in 1946 from the conservation law of momentum. Using a = d m ;  
u / c  =dl --.a2 eq. (126) can be transformed into 

1 
C 

(128) 
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This  formula was found by R. Esnault-Pelterie i n  1928 from a relativistic treatment 
of the special case of a rocket with constant proper acceleration a,. H e  noted that this equation 
is valid for any law of mass  consumption s ince  it is independent of u,. In classical phys ics  
(c + m the bas ic  relativist ic rocket equation becomes the well-known formula 

(Ref. 11) 

or u / c  + 0) 

s ince  

u 141 i- u /c )+  141 - u / c )  u -__ - 
u In (1 + u /c ) -  In (1 - u / c )  

2 veo 
limIn T =  lim - = lim - 

u / e  0 d C + O  ueo 2 u / c  4 c - 1 0  Ueo 

Representing 

as  function of x = u / c  (0  
( y ” = 0) appears for 

x 6 1) , a double differentiation shows that a n  inflection point 

The most favorable case u, = c (photons)y ie lds  xi = ’/r and y i  = l / dx  ; that is, the  
inflection point appears when u = c/2 and r = 3 

Before closing this  part, it should be mentioned that in the special case F, 11 u 

F = F , - / J . , u = F ,  1- - 
u:,) 

If u = u, is attained, then u, will vanish and a l so  F = 0. From the technical point of view 
the thrust force F,  of the rocket in  the r e s t  system So is naturally the matter of primary 
interest .  

E. Motion end Mass Consumption of a Rocket 
Under a Constant Proper Accelemtion 

The motion of a body under the action of a constant proper acceleration a, in the direction 
of the velocity (a , ( 1  u), that  is rectilinear uniformly accelerated motion, is known as hyperbolic 
motion. It was first considered by Minkowski in  1908, but was d iscussed  more ful- 
ly by M. Born (Ref. 13) in  1909 and A.  Sommerfeld (Ref. 14) in 1910. It was R. Esnault- 
Pelterie (Ref. 1) in 1928 who applied this kind of motion to  rockets with constant thrust accele- 
ration and discovered the bas ic  relativistic rocket equation for any law of mass  consumption. 
Contributions to th i s  problem were a l so  made by Shepherd (Ref. 15), W. L. Bade (Ref. 16), 
E .  Saenger (Ref. 17) and others. This  presentation follows closely the author’s treatment 
(Ref. 8). 

(Ref. 12) 

For a rocket in  rectilinear motion with a constant proper acceleration in a system moving 
with the  rocket (rest system) and thus a different one at each instant-eq. (67) can be written as  
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or, integrated, 

U 
= a o t  (with u = 0 for t = 0) dl - U 2 / C Z  

This  gives  for the velocity - 

and, thus, f o r a  

Eqs .  (130)  and (133)  yield for the acceleration 

The distance is obtained by integration o f  eq. (132) with 

thus 

1 - _  - a 2  1 1 +  sox, I C  " t  = 
C 2  C \/1 - u 2 / c 2  a 

Eqs.  (135)  or (136)  give immediately 

Therefore, the world l ines  are  hyperbolas in  an 
bolic motion in  comparison to parabolic motion 
inversion of the above-mentioned formulas yields  for the t i m e  

x - t diagram and the motion is called hyper- 
( x  = % a ,  t 2 ) in Newtonian mechanics. The 

The proper time of the astronaut follows from integration of eq. (133): 

7 The inverted formula reads 

r 1 

= to b + F  l a  $ t o  + -  l a  $ t o  +-J 
5! (140)  
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Inserting this  relation into eqs.  (133) ,  (134) ,  ( 1 3 2 )  and ( t 3 5 )  y i e l d s  the  acceleration, velocity 
and distance of the rocket as a fur?ction of the proper or local  time of the astronaut. 

2 4 
1 

cosh (a ,  t , / c )  a =  

2 

= a ,  a0 
cosh3 ( a ,  t o / c )  

a =  

1 

In addition to eq. (139)  for the proper time to the inversion of the preceding formulas yields 

A rocket travelling with constant proper acceleration a ,  requires, in order to attain a given 
dis tance X ,  a time 

in the system of c lass ica l  physics;  

in the system of the stationary earth 

- 1  

observer; 

cosh-'(l 

in the system of the a'stronaut traveling with the rocket. In general to < T < t. 
nauts undergo an immense gain in t ime  from the relativist ic principle. 

The preceding relations contained only kinematical data .  

Thus the astro- 

The equation of motion in the 
system of the astronaut 

yields,  after integration, the m a s s  ratio of the rocket: 
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The thrust is given by 

a F~ = mo a. = M, a. / r  = M~ a, e . = r  
' F, ?Mo 

The other kinematical data,  expressed as functions of r, are: 

All relations in this paragraph can be written in a dimenQonless form by selecting c/a,. as the 
unit of t ime ,  c as  the unit of velocity and c V a o  a s  the unit of length. With c = 3-1010 cm/sec 
and a, = go = 981 cm/sec2  

c 2  9.1020 
g o '  981 
_ -  _ - -  - 9 . 1 8 -  1017 c m  = 9.18.  7012km = 6.14. Z O 4  A.U. = 0.97 l igh t  years  

years 

F. Motion and Mass Consumption of  a Rocket 
Under a Constant Thrust (Constant Mass 
Flow Rate) 

In this  case ,  f i rs t  treated by the author (Ref. 8) in  1955, and a l s o  by Kooy (Ref. 18) the in-  
vestigation again proceeds from the equation of motion of the rocket in the system of the astro- 
naut traveling with the rocket, namely 

Taking a constant m a s s  flow rate,  po , the m a s s  then decreases  linearly with t ime  t o  according 
to the law 

mo = M a -  p o t o =  Mo (I- ' - 1 3  
MO 

(156) 

Again taking the exhaust velocity 4, 
must be constant. On the other hand, F = F, 
ing the two eqs.  (155) and (156) the proper acceleration is 

of the gases to be a constant,  then the thrust, Fo , a l s o  
(1 - due,  ) = p,, (u- - u) is variable. Combin- 
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or (s ince u = du/dt = a du/dto j 

An integration yields 

Thus,  the reciprocal m a s s  ratio is 

This is again the basic  relativist ic rocket equation which is valid for any law of mass  consump- 
d o n .  The inversion of eq. (158) gives the velocity 

therefore 

In the two preceding equations, 1/r can a l so  be replaced by mo / M o  o r  1 - (po /Mo)  t o .  The 
acceleration is easily found from u = uoa 3 using eq. (160). The t ime and the distance can b e  
determined in the following manner, using eqs .  (158), (159) and (160): 

and 

In these last equations, l / r  can be substi tuted by m,, to or u according to eq.  (158). 

In c lass ica l  physics  (c -t m ; 6 = v /c+O) a = 1, u = u and t =  to. For  eqs .  (159) 

and (163) the l imi t  must be found by means of the Bernoulli-de 1'Hospital formula: 
eo 
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and 

inverted to give 

t =  

= t o  ( +  

Unfortunately it is not possible to  express acceleration, velocity and distance also by the 
time t ,  as  in  the spec ia l  case of constant proper acceleration, s ince  eq. (161) cannot be 

t o  as  a function of t .  Developing th i s  equation in a power ser ies  

then the reversed power ser ies  reads 

All preceding relations can  be written in  dimensionless form when choosing M,/P, as  the unit 
of time, c as  the unit of velocity and c M,/,uo a s  the unit of length. The following three 
tables show numerically the characteristic difference between the case of constant thrust accel- 
eration a, and the case of constant mass  flow rate po (the exhaust velocity v,, was taken 
constant in all cases) .  For the second case (p ,  = const.) the calculations were made for two 
special exhaust velocit ies,  namely for v ,  = c/10 and v, = c (photon rocket). The assump- 
tion v, /c = 0 .1  is not typical for ion rockets; it is probably an  upper limit. For fusion pro- 
cesses, the  mass conversion is <0.009 corresponding to ve, /c <O. 134. 
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Data of 

Data of rocket in free space 
without external forces 

Velocity of rocket 

Actual mass of rocket 

Time element 

Acceleration of rocket 

Exhaust velocity of expelled 
gases 

Element of mass flow (after ejec- 
tion) 

Mass flow rate 

1 Thrust force of rocket 

Table 2 
tocket in Free +ace Without External Forces 

In system S of stationary earth 
observer 

In res t  system So of astronaut 
centered in the moving rocket i tself  

0 

m0 

dt0 

a0 



Table 3. Constant Th.,mst Acceleration u, 

I 

C 

m dt U x 
ca/,o 

a= A =  _- 
m a i e  a0 

p = y  

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.995 
0.99995 
1.0 

' 0.9798 
0.9539 
0.9165 
0.8660 
0.8000 
0.7141 
0.6000 
0.4359 
0.1 
0.01 

0 

1 

0.9850 
0.9406 
0.8680 
0.7699 
0.6495 
0.5120 
0.3642 
0.2160 
0.0828 
0.001 
0.000001 

0 

0 

0.0050 
0.0206 
0.0483 
0.0911 
0.1547 
0.2500 
0.4004 
0.6667 
1.2941 
9.000 

99 .OO 
m 

0 

0.1005 
0.2041 
0.3145 
0.4364 
0.5774 
0.7500 
0.9803 
1.3333 
2.0647 
9.950 

100.00 
m 

0 

0.1003 
0.2030 
0.3097 
0.4240 
0.5493 
0.6932 
0.8675 
1.0986 
1.4722 
2.9932 
5.298 

m 

1 

0.9980 
0.9944 
0.9847 
0.9715 
0.9513 
0.9242 
0.8850 
0.8242 
0.7130 
0.3008 
0.053 

0 

1 

1.1054 
1.2247 
1.3627 
1.5274 
1.7321 
2.0000 
2.3806 
3.0000 
4.3589 

19.975 
200.00 

00 



p = p / c  I t I - - -  t 
M o  /Po ':io ,'Fo 

0 0 

0.6334 0.6329 
0.87 19 0.8684 
0.9604 0.9547 
0.9935 0.9855 
1.0051 0.9959 
1.0088 0.9990 
1.0098 0.9999 
1.0101 1 .oooo 
1.0101 1 .oooo 
1.0101 1.0000 
1.0101 1.0000 

4e 
t 

1 

0.9992 
0.9960 
0.9941 
0.9919 
0.9908 
0.9903 
0.9902 
0.9900 
0.9900 
0.9900 
0.9900 

p = p / c  

- 

0:o 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.995 
1.0 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.995 
1.0 

Table 4.  ( 

x 

c M o  / P o  

0 

0.0269 
0.0603 
0.0816 
0.0930 
0.0981 
0.1002 
0.1008 
0.1010 
0.1010 
0.1010 
0.1010 

I I 

Tab le  5 .  Constant Thrust v o / c  = 1 ( Fhoton Rocket) 
~ 

X 

C M o / P ,  
0 

0.0047 
0.0180 
0.0394 

0.1080 
0.1591 
0.2278 
0.327 1 
0.4993 

0.0690 

1.2476. 
W 

~ 

t m 
0 

0.0 955 
0.1847 
0.2701 
0.3547 
0.4414 
0.5341 
0.6396 
0.7715 
0.9730 
1.7464 

m 
.-  

t 0  a 

K T o  
0 

0.0953 
0.1835 
0.2662 
0.3453 
0.4227 
0.5000 
0.5799 
0.6667 
0.7706 
0.9499 

1 

- t 0  
t 

1 
0.9979 
0.9935 
0.9856 
0.9735 
0.9576 
0.9362 

0.8642 
0.7920 
0.5439 

0.9067 

0 

1 

2.724 x 10' 

2.208 x 10' 
6.912 x 10' 
2.430 x lo2 
1.024 x l o 3  

5.905 x lo4  
2.476 x IO6 
1 . 0 2 4 ~  1013 

7.599 x loo  

5.844 105 

m 

r I 
. I  

1 
1.1054 
1.2247 
1.3627 
1.5274 
1.7321 
2.0000 
2.3806 
3.0000 
4.3589 

19.9750 
00 
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PART II 

REL.ATIVISTIC PERTllRBATlON THEORY OF AN ARTIFlCl AI- SATFLLITE 
IN AN ARBITRARY ORBIT ABOUT THE ROTATING OEIATEP EARTH SPHEROID 

AND THE TIME DILATATION EFFECT FOR THIS SATELLITE 

SUMMARY 

In this  pa r t  Einstein’s general theory of relativity (gravitational theory) i s  applied to the 
motion of an  artificial satellite revolving in an  arbitrary orbit around a central body and the t i m e  
dilatation effect for this  satell i te is given. This  relativist ic perturbation theory is based on 
Einstein’s general field theory, differential geometry of non-Euclidean spaces, potential theory, 
and ce les t ia l  mechanics. The snort periodic perturbations are excluded by using t i m e  average 
values over a revolution. The secular and iong-periodic (non-relativistic a s  well a s  relativist ic) 
perturbations of the osculating orbital elements, which represent deviations from the ell iptic 
orbit, are presented here for the case of a rotating, non-homogeneous, oblated spheroidal central  
body. This  is an  extension of the work of Einstein (1915) who considered motion around a mass 
point as  well as  the work of deSitter(l916) and, independently, of Lense  and Thirring (1918), who 
treated the  relativistic motion around a rotating, homogeneous, spherical  central body, omitting 
the terms due to  the square of the angular velocity. 

A formula for the relative difference of the time rates of a satellite clock, compared against  
a standard earth clock (time dilatation effect) is derived for orbits of any eccentricity and equa- 
torial inclinations, thus extending the paper of Winterberg (1955), Singer (1956) and Hoffmann 
(1957). 
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3. I APPLICATION OF THE GENERAL THEORY OF RELATIVITY 
TO ART1 FlCl AL SATELLITES 

A. Relativistic Perturbation Theory 

In this section Einstein’s general theory of relativity will be applied to  determine the  
motion of an  artificial satellite revolving around the rotating earth as  well as  the d i f f e r e n e  in 
t i m e  ra tes  of a satellite clock and a standard earth clock. 

In Einstein’s gemral theory of relativity gravitation is determined by the 10 differentcom 
ponents g, of a symmetric covariant tensor of the second rank called the fundamental or metric 
tensor. These components g,, and they appear 
in the formula for the four dimensional line-element of the non-Enclidean tine-space world,namely 

a re  functions of the coordinates x f ;  x 2 ;  x 3 ,  x 4  

In the following, a spherical  polar coordinate system x2 = 8; x 3  = 4; x 4  = ct) will  
be used, where r is the radius vector, 8 the longitude, q5 the latitude, t the time and c t h e  
light velocity. The l ine  element h a s  the following form 

( x l  = r; 

b cos2 q5 
gi,= 0 f i  + k) except g,, = g42 = ( b  = const) 

r 

where a and p are  functions of r alom while g wilI be assumed to be a function of T 

a d  q5 because it is needed to the second order. 44 

The fundamental metric tensor has  now the following covariant components: 
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I 

g33 O 
- - g11 g22 

O g44 

1 

g24 

gll g42 

g33 O 

g = I gk* I = g11 

2 
gll %2 g33 g44 - gli g33 g24 gll 4 2  g33 g44 

g22 g24 

0 g,, 0 
g42 g 4 4  

The contravariant components are now the minors of the correspondent covariant components 
divided by the determinant, namely 

g22 g24 

g42 g44 

O g33 O 

minor of gkl - cofactor of g,, gk’ = - 
g g 

g22 g24 
1 

= -  

g11 

O g42 g44 

Therefore 

11 1 g = -  
g 

g22= - 1 
g 

g44= - 1 
g 

The Christoffel three-index symbols of first  a d  second kind can now be defined as :  

and 
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for i = l  or3 (171) I" 
L 

where the g,, a d  gkl were taken as functions of xi and x3 ody. Special cases for 1 = i, 
l = k  and k = l = i  are 

i i 
thus rZi = 0 and r4< = 0. 

r= 1 

r=  1 

When all the functions g,, , g,,, g33, g ,  and g,, = g42 are k t i o n s  of = r and 
x = 4 ,  thenthe ril +o. are 
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r = -gJ.7;r3= i a  - - i a  
33 a x ,  44 2g33 a x 3  

and the following Christoffel symbols vanish 

By contraction of the Riemann-Christoffel curvature tensor of rank 4 for the non-Euclidean 
is obtained by the ,explicit expres- space-time world a symmetrical curvature tensor of rank 

sion 
2 

a r '  a r '  
B r k r l  r = R k l =  R1k c x e -  r r 8  c T :  r:8 -E-,?? r +x r a  rl: (172) 

Using the relation 

t h e  contracted curvature tensor can now be expressed by 

k l  11 k l  I2 k1  13 k l  14 

+ [r1r3  k 3  1 2  + r k z ~ r ~ ~ ~ + r ~ r ~  k 3  I 3  +r4r31 k 3  1 4  + [ r 1 r 4  k 4  I f  + r 2 r 4 + r 3 r 4  k4 I2 
k4 1 3  + r 4 r 4 J  k 4  1 4  
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and thus for 1 = k 

R =  k k  - :  r 
k k  

+ (PJ2 + 2 r" r1 + 2  r3 r + 2 r4 r + (r z ) 2  + 2  r3 k 2  r k 3  
k l  k 2  k l  k 3  k l  k 4  k 2  

+ 2 r 4 r 2 + ( r ; ) 2 + 2 r d r 3  k 2  k 4  
k 3  k 4  +(rJ2 

3 
Neglecting higher order terms the ten components of the cortracted curvature tensor are 

+ 2 r2; r,: + 2 r2: r2t a r '  a r 3  
a x ,  a x 3  
-22-22 

R 1 3 =  R 3 , =  a 2 1 n d T i T  - r3 a 1 n d T 1  2 r 2 + r 2 r 4  + r 4 r 4  a x l a x 3  1 3  ax, + r12 32 1 4  32  1 4  3 4  

3 r 4  r 2  +r 3 r  +r2:r4; +r24 1 4  rrl +rZ4 4 3  + r22 41 2 2  4 3  

The most important problem in Einstein's theory was to set up the general equations deter- 
mining the gravitational field variables or the when the distribution of mass is g i v e n  
Einstein finally solved this problem in 1915 after several  attempts and succeeded in finding the 
general field equations in covariant form corresponding to Poisson 's  equation in Newt  on ' s 
mechanics. Based on the theorems-of conservation of energy and momentum he (Ref.191 found 

g k ,  

34 



a h e r e  

i s  the curvature scalar and 

is Einstein’s energy-momentum tensor neglecting the s m a l l  contributions of pressure and elastic 
stresses ( p = density). The constant of proportionality 

8 n G  
c 2  

K =  -- (177) 

follows from a comparison of the general field equations with Poisson’s  equation ( G  is Nemon’b 
gravitation a1 cons tan t) . 

Multiplying Einstein’s field equations (174) by g kl and summing over k and I (con- 

R =  K T  (178) 

traction) then follows 

because 

.. . .. . 

‘Iherefore, the field equations can be a l so  written in the form 

Neglecting the pressure gives 

Einstein’s field equations a re  a system of nonlinear partial  differential equations of the second 
order which must be solved simultaneously to obtain the components g,, of the metric tensor. 
An approximate solution for a field with spherical  symmetry was first given by A. Einstein 
(Ref. 20)  in 1915, making the assumption that 

1 
2 

= I or p +  - ( u +  ,)=O; 

2 m  

y = -  7- u = - y ,  p = o  , 

where 

1.475 km (Sun) m = - =  
C 2  0.4435 cm (Earth) 

is the gravitational 
the correct solution 

radius of the central m a s s  M .  In 1916, K. Schwarzschild (Ref. 21) gave 
(with d a  = I ) .  
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The line element h a s  now the form 

Introducing harmonic or isotropic coordinates F, 8 ,  $, c t  defined by the  transformation 

the line element assumes the form 

(185) 

Including only first order terms in  a = p and second-order terms in y and neglecting the small  
difference between r and 7 the l ine element is now given by 

4 

ds2=- (1 + E) ( d r ‘ z + r z  cos24 d82+72d42)+ 

2 m  2 m 2  ( d r 2 + r 2 c o s 2 $  d e 2 +  r 2 d $ z ) +  -)c2dt2 (186) 
1 2  

thus 
2 m  2 m  

y = -  T 1 2  
+ -  a = P = - y  , 

This  particular form was derived and used by deSitter in 1916. It determines the  
metric of the non-Euclidean space-time world i n  the neighborhood of the mass  M and the gravi- 
tational field and thus governs a l so  the motion of satellites around this  mass. 

(Ref. 22) 

In 1916 W. deSitter (Ref. 22) h a s  a l so  shown how the motion of satellites is influenced by 
the rotation of the central body according to Einstein’s gravitational theory by a l so  introducing 
the component 

T Z 4 =  - p 0 r2cos2 4 

of the energy-momentum tensor in  h i s  field equations (0 = angular velocity of the  central body). 
The solution then g ives  the component 

( b  = const.) 
b cos2 4 

g24= 

In 1918, J .  L e n s e  and H. Thirring (Ref. 23) independently solved the same problem us ing  
Einstein’s linear approximation solution for weak fields (Ref. 24) and they arrived a t  the  same 
result  as de  Sitter. All these  authors neglect terms proportional to 0 2 .  

In this paper the g,, will be determined including terms due to 0 and Q 2  as well as  
terms due to the oblateness of the  central body. This  then leads  to the relativistic perturbation 
theory for the motion of a satellite around a rotating oblated central body. Again, Einstein’s 
l inear approximation method for weak fields will be used. 
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A Cartesian coordinate system ( x i  = x; x 2  = y; x g  = z) with x 4  = i c t for the imaginary 
time coordinate will be used. In th i s  system all the g, have the same value - 1 in  zero 
approximation. If 

and 

U.=1 
then Einstein’s solution for weak fields is given by 

along with the energy-momentum tensor 

the volume element 

d v0 = i 2 dx dV = i 4 dx d x ‘ d y ‘ d z ‘ = i  * r ‘2dr’cos + ’ d + ’ d O ’  (191) ds d s  d s  

and the distance of the mass element dm’ from the attracted point ( x  = r cos + cos 8 ;  y =  T cos+ 
sin 8 ; z = r s in+)  under consideration 

with 

C O S U =  s i n + ’ s i n + + c o s + ’ c o s + c o s ( 8 ’ - 8 )  

From potential theory for T > r’ 
a, 

(193)  

n =  0 

where, according to Legendre, the surface harmonic Pn (cos  a) is given by the addition theorem 
n - s)! 

P, (cos  a) = Pn (sin+) pn (sin+’) + 2C/&-37 pz (sin+) JJ: ( s i n + ’ ) c o s  s ( 6 ‘ -  ‘1 

(19.5) a =I 

and 

d ‘P (sin+) P* (sin+) = coss  + 
n d (sin +) a 

are the associated Legendre functions of Ferrer. 
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Under the assumption that the central body rotates around the z-axis the velocity Components 
of the mass element are: 

12 T' 
= -  i - COS $'cos 8' dx 2 = - i  - dY' - - - i -  Q X '  

_. 

dx4 c dt C C 

, 
dx dx 3 = 0  . 4 = ]  
dx 4 ' d x ,  

The components of the energy-momentum tensor are therefore 

0 1 

(197) 

Introducing eqs .  (l9O), (191) and (194) into eq. (189) y ie lds  

(I3)'2 dx, (g)n Pn (cos a )  dm' 
d x 4  

In first approximation there is 

thus 

dx4 3 dx,  ($nPn (COS u )  dm ' 

n = O  
where the components of the tensor (dxk/dx4)(dxl  / dx4 )  are given by the matrix in eq. (197). 

It follows a t  once that 

= 0 ; .  y i 3  = y &  = 0 ; y;3 = 0 ; y; ,  = Y4'3 = 0 Yl;  = Y 3 ;  

while the other components are given by 
M 

m 

P,, (cos  0) dm' s in2  e '  
cos28'  

0 
n= 0 
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Y44 ' == 4G 2 f ( ? n  Pn ( c o s u )  dm' 

n = o  30 

" 

The expression for Pn (cos u) in  eq. (195) a d  the mass element, dm'= R r '2cos +'dr'd+'de',  
will now be introduced into eqs.  (197) to (202). The integration with respect to the local radius r, 
will be made from 0 to R ;  with respect to the latitude, +', from - n/2 to n/2; and with respec t  to 
the longitude, e', from 0 to  2n. For a spherically symmetric model the  density is independent 
of the longitude, e', and will be assumed to  be given by p = p ( T : + ' ) ,  Therefore the  integration 
with respec t  to 8' can be performed immediately. Ineq .  (199) there occurs the irtegrals: 

s in  8' 

Therefore 

The following integral appears in  eq. (200): pns ( e ' - e )  do'= 0 
thus 

" 
M 

3 Y4;= 2 [ A:-- P ( s in$ )  l r ' n  Pn (sin 9') dm rn 
n = O  

In eq. (201) the following integr;tls can be found: 

sin 6' cos 8'de'= 0 

s in  ~ O ' C O S  s (6 ' -  e )  de' 

( ; s; 2 e .(s= 2) 

s in  O'cos e ' c o s  s (6 ' -  8)  d o ' =  % 

s in  [ ( s  + 218'- s 81 - s in  [ (S- 2) 8 ' -  SO] 1 de'  = 
( S Z 2 )  
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therefore m 

thus 

Introducing 

- 1  
P ,  (sin 4 ’) d m ’  = (n =1) J n =  - 

JO 
(approximate values refer to a homogeneous body) and using the gravitational radius m = GM/cZ eqs .  
(2C3) to (206) become 

4 m  
r 

rl’l = - - 
22 

g 1 2  = Y1 

r n = O  

, 4 m  
y 4 4 =  -7 1 1 

j” P, (sin 4)  
00 
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n= 1 
and therefore 

Because 

there is 

4 

Taking only the terms up  to n = 2 then the components of the fundamental tensor are 

- + i 2" (F) r (+) cos 4 cos sin e 0 
g14 - - 

24 

Inorder to have a spherically symmetric field the very s m a l l  terms proportional to m / r  and (CJR/c)* 
will be neglected. In g4, ody, the  t e rn  will be retained and the secord order term 

2m2/ r2*  [1 - 2 J, (R/r)2 P2 (sin$)] 

41 
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will be added according to de Sitter (eq. 186). The reason why g,, is required with higher accuracy, 
is that it appears inthe equations of motionmultiplied with the large factor cz. The line element can 
now be written 

ds2 = g,, ( d x Z + d y z + d z 2 )  - g 4 , c 2 d t 2 +  g, ,dx icdt + g,,dy icdt 

Because 

d o 2 =  d x 2 +  dy2 + dz2 = d r 2 +  r 2  (COS'+ d e 2  +d$')  

the l ine element can. be written 

This i s  m w  the square of the four-dimensional lire-element for a non-Euclidean space outside a rota- 
ting oblated urhomogenous spheroid of m a s s  M .  Writing 

d s 2  =g,, dxf + g,, dxi + g,, dxi  + g,, dx: + g,, dx, d x ,  

where now 

then the comporents of the furdametral tensor are 
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Their derivatives are given by 

It is  now easy  to write the values for the Christoffel symbols of second kind: 
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a d  

and 

and finally 
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These Christoffel symbols wil l  m w  be substituted into the eqs .  of motion (geodesic line) 

but first of all the line element ds can be eliminated by the relation 

k = l  f = 1  

which follows immediately from eq. (223). Therefore 

or after dividing by (dx ,  /ds ) 2 

4 4  

d 2 x ,  dx," + (rif -rlf ..i>..* dx ,  d x ,  dX, d x ,  = 0 [i = 1, 2, 31 
k = l  2 = 1  

Because 

XI = ?  ; x 2  = e  ; x 3  = $  ; x4  = c t  ( G , = ~ )  

the f inal  form of the equations of motion is 

2, + 2 2 @if - rlf+,,ik [ i = 1 ,  2, 31 ( 2 2 5 )  

k = l  1 = 1  

The equations of motion in  spherical  polar coordinates are thus, up to terms of order m, 

I 
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Ill II II 1- I I I II 111 

Using the relations between the different Christoffel symbols and bringing the terms of the unperturbed 
motion to the left s ide  of each equation, the right s ide  will' then be the perturbing acceleration (radial  
component R ,  la teral  component P ad meridional componed Q, respectively) due to oblatenessanl  
relativist ic effects.  Rearrargemert of the equations of motion yields 

and 

. .  d . *  
- (+'SO cos2$)  =_ r 8 cos 4 + 2  r 8 cos + - 2 r 8 $ s in$ .=  P 1 

r cos $ dt 

and 

In order to investigate the perturbations of the osculating orbit elements the perturbing ac- 
celeration must be given by its radial compoents  R ,  its transversal  component 5, and its orthogo - 
nal component W .  Definitions and transformation equations may be found in the author's report ( ref  . 
2 5). Introducing y , the inclination of the orbit with respect  to the equator of the primary, x,. t h e  
velocity or flight azimuth angle or the angle between the local meridian a d  the orbit plane,  and u = 
w + w ,  the argument of latitude or the sum of the argument of the pericenter a d  the true anomaly, there 
exis t  the following relati6ns for the angles: 

cos  4 sin- X = cos y 
cos $ cos x = sin y cos u 
sin $ = sin y sin u 

and the following equations for the angle ra tes  

B cos2 $. = zi cos y B cos  4 = zi sin x 4 cos + = ; sin y cos u ; 4 =; cos x 
9 
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Its components 

vr =;; ue = r 6 c o s 4  , v + =  r $  (232) 

are now transformed to the radial, transversal, and orthogonal velocity components, respectively: 

ur = r 

v , = v ~ s i n X + v + c o s X = r 6 c o s $ s i n X + r $  c o s x  = r ;  

v Y = -  V,3cos x +  v 4 s i n X = - r 6 c o s ~ c o s X + r $ s i n X = O  (233) 

The  tram formation equations for the components of the perturbing acceleration are 

R = R ;  S = P s i n X +  Q c o s X  ; W = - P c o s X +  Q s i n X  (234) 

From the above mentioned relations, there follow the equations 

s i n  2 $ COS X = s i n 2 y  sin 2 u ; 

s in  2 4 sin X' = sin 2 y sin u 
4 s in  2 4 = i sin2 y sin 2 u 

; (235) 

which will be used in applying the transformation equations. Substituting the values of P (right s ide  
of eq. 227) and Q (right s ide  of eq. 228) into eqs. (23.4) and taking the expression forR(right s ide  of 
eq. 226) then (after using eqs.  (229), (230), (235) the compbnents of the perturbing acceleration a re  

1 

- (Zs?;); cos Y 

w = -  r:4 ) z2 s i n 2  y s in  u + (siAi) P' s in  2 y s in  u s in  2 q5 r 

or, after substituting the values of the Christoffel symbols and writing 

P2 = P2 (sin $) = P2 (sin y s in  u )  ; c 2m = GM = p 

there is 
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and 

3 
2 T  

+ 2 T r f!?) (:) J c sTm 
(i cos u + 2 r i sin u) (241) 

These expressions for the perturbing accelerations can he simplified by using relations for unperturbed 
aeplerian motion in order to obtain first order perturbational effects, namely 

. h .  . h  r = - e s i n w ;  u = -  ' P T z  ' 

or 

Eqs. (239), (240) a d  (241) can now be written in the form: 
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and 

and 

sin2 y s in  2 u + 

- 2 r r+2) e cos  y s in  w + 3 (244) 

4 J2(:)2(2- ; ) s i n 2 y  s i n u  + 

e sin w cos u + 2  

The Lagrangian method of the variation of parameters gives the following equations for the t ime  rate 
(variation) of the osculating orbital elements: 

- - da - - g [ ( e s i n w ) R + ( p / r ) S ]  ; :: = 2p T S  

dt h h 

+ c o s y -  - - - h ~ , ~  ~ [(+ - 1) R 1 e sin w d n  d o .  
dt dt dt 
_ -  _ -  

d y  - T C O S U  

dt h 
d a g  = T sin u 

w ;  dt q w  - - _ _ _  

Substituting the expressions for the perturbing accelerations R, S ,  W into the eqs. (246) to (250) that  
yields after reduction: 
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The differemial equations (251) to (256) have to be integrated with respect  to the t i m e  or better 
with respect  to the true anomaly w using againthe relations 

T 2  

h t 
d t = -  dw , P = l + e c o s w  , U = O + W  

of Keplerian motion on the right s ide  of the above-mentiored differential equations. Instead of 
doing this,  t ime  mean values of the variable terms over one revolution will be used on the right 
s ide  of eqs. (251 )  to (256) inorder to cancel  out short-periodic perturbations. Using 

c 3 1 +  - e2 2 

- e j l +  3 '  g,) 
2 

' 3  - e 2  4 

1 - e3 
8 

0 

d M = n d t =  n - r 2 d w  , - P = l + e c o s w  
h T 

there is 

The evaluationof this integral for v ,  K as integers shows that 

and that 

1 for K = 0 

1 
- e  ~ = l  
2 I 0 m > l  

e 2  
2 1 + -  for K = O  

K = l  

__ e2 K = 2  

0 K >  2 

for K = 0 

K = l  

K = 2  

K = 3  

K > 3  
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C O S  K W (-+= $4 ' 

3 
8 

l + 3 e Z + -  e 4 f o r  K = O  

- e 3  K = 3  
2 

1 - e4 
16 

K = 4  

0 K >  4 

Due to u = 0 + w, the additiontheorems 

1 1 
2 2 s in  w . s in  2 u = - - cos ( 2 0  + 3 w )  + - cos (2  0 + w )  

1 1 
2 2 s i n  w . c o s 2 u  = - s i n ( 2 0 + 3 w ) -  - s in  ( 2 0 + w )  

a d  the expression for the second harmonics 

1 3 1 rb - sin2 y> + sin2y cos 2 u ( 3  sin2 y sin2 u - 1) = - 
Z L  

1 
2 Pz =- 
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there is 

These general formulas provide mw the following special time mean values applied to eqs .  ( 2 4 9 )  to 
( 2 5 4 )  : 

‘2 = _  1 L 1(1+ 3 e ? t -  - 3 s i n 2 9  @ 2 h p 3  2 
9 

c i n  wT:n 2 u  1 n ( s in  q i i n  2 u )= 1 hpz n e cos 2 o e cos 2 0  ; 
>=  Z h p  
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r i n w  ;fn 2 IL )= zhp3 3 n e (1 + %2)cos 2 o 

Substituting these t ime  meanvalues into eqs.  (251) to (256) then, after reduction, the equations can 
be written 

(257)  45 e: sinzy, s in  20 + 

or 
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It is easy  to  integrate these equations where the orbital elements on the  right s ide  have their unper- 
turbed constant values (subscript 0 )  except a, which is a linear function of time t ,  namely 

The integrals 

cos  2 0  sin 2 0 d t  = -  - S anon-rel. s anon-rel. 

s in  2 0 
COS 2 0  dt = -- 

show that long-periodic perturbations appear in addition to the secular perturbations. 
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B. The Time-Dilatation Effect 

Using the line element of eq. (222) the ratio of the proper time element d r  to the local time ele- 
me-nt dt is given by 

or accurately enough 

GY= l -  

thus 

This  formula, containing 
( r  = R,  v = n R Cos 4 ) :  

the invariant proper time element dr = d s / c ,  is now applied to an  earth clock 

Assuming the Earth's surface an equipotential surface, the potential W ,  i s  constant and can be expessed 
by its value at the equator, thus 

where x = 0 2  R: / p  has  been introduced. 

Applying eq. (265) to a satellite clock moving with the satellite in an  arbitrary orbit 

( s i n 4 = s i n 6 = s i n y o  s i n u  ; v ~ / c ~ = ~ ( Z / T -  l / u o )  ; U = W + W )  , 

that yields 

Using the t i m e  meanvalues 
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then results 

Dividing eq. (266) by eq. (267) gives for the relative difference in the time rates  of a satel l i te  clock 
compared with a standard earth clock 

Eq. (268) c o n s i s t s  of three m a i n  terms. The first term (gravitational red s h i f t  and t i m e  dilatation) w a s  
f i r s t  given by Winterberg (1955, Ref.  26) and Singer (1956, Ref. 27). The former author a lso added the  
l a s t  term due to the rotation of the  Earth. The second term, due to the  oblateness of the Earth,  corrects 
and generalizes the tern given by Hoffmann (1957, Ref.  28) for circular orbits in the equatorial plane.. 

This paper will be concluded by listing certain constants of the Earth’s gravity field which appear 
in the text,  namely 

light velocity in vacuo, 299792.50 + 0.10 km/sec (K.D. Froome, 1958) 
gravity factor of the  Earth, GM = 398613.52 km3 /set* (Herrick, Baker, 1957) 
equatorial radius of the Earth, 6378.150 + 0.050 km 
oblateness constant of the Earth, (1082.190 + 0.023) x 10% (Kozai, 1960) 
inhomogeneity factor of t h e  Earth, 0.3336 = 1/3 
inhomogeneity factor of t h e  Earth, - 0.0429 = - 3/70 
gravitational radius of t h e  Earth, p / c  = 0.4435 cm 

pctential energy factor of the Earth, 6.95377 x 1 0 - 2 0  

angular velocity of the Earth’s rotation, 7.292115083 x 1 0 - 5  s e c - 1  
rotational velocity a t  the Earth’s equator 465.102 m/sec 
angular momentum (per m a s s  unit) a t  the Earth’s equator, 2.96649 x 1 0 9 m  '/set 
centrifigal factor a t  the Earth’s equator, Q2 R: / p  = 3461.30 x 10- 6 

rotational velocity ratio, 1.55142 x 

square of the rotational velocity ratio, 2.40691 x 10 - I 2  

(Baker, .1961) 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Redstone Arsenal, Huntsville, Alabama, May 22, 1962 
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